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Abstract The limited autonomy of social robots currently prevents many ambitions 

in educational robotics from being realised. This leads to scripted dialogues, content 

that fails to adapt to individual students and conversations remaining largely text-

based. Recent advances in generative artificial intelligence (AI) might alleviate 

these issues, allowing for educational robots whose dialog can be flexibly generated 

based on the lessons to be taught, the student’s needs and personality, and the envi-

ronment. This chapter presents a vision of how generative AI can power truly au-

tonomous and adaptive social robots in education, discussing limitations of past ed-

ucational robotics research, recent technical advances in AI, as well as concrete 

examples of applications of AI in educational human-robot interaction, and a reflec-

tion on limitations of current AI. By bridging technical and pedagogical perspec-

tives, it shows what the next step in the evolution of human-robot interaction in 

educational contexts might look like.  

Keywords Educational Social Robots, Generative Artificial Intelligence, Educa-

tional technology, Adaptive Learning, Conversational Artificial Intelligence 

1. Introduction 

Commercial generative artificial intelligence (AI) tools such as ChatGPT, Copilot 

and Gemini have had a noticeable impact on education, sparking both enthusiasm 

and apprehension among educators and students. Students use it to write their as-

signments – forcing teachers to reevaluate their evaluation methods – while teachers 

use it as a tool for automatic grading (Adeshola & Adepoju, 2023; Dempere et al., 

2023). Here, we will step away from students and teachers using the AI tools 
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directly and focus on how generative AI can turn social robots into more successful 

teachers, teaching assistants, and tutors. 

Social robots for education have been developed for a more than three decades 

now (Belpaeme et al., 2018). However, as we discuss in Section 2, they still often 

lack real autonomy and generalisability, limiting their applicability in real-world 

classrooms. Meanwhile, the last few years have seen the emergence of many pow-

erful generative AI models, which we define here as AI models that generate new 

content (Feuerriegel et al., 2024). This content can be natural language text, which 

is generated by (large) language models (LLMs), often based on a piece of input 

text which is called the prompt. They are not only limited to text, but multi-modal 

modals can also use other modalities such as images as input (Gan et al., 2022). 

Other models also generate new images or sound, often of remarkable human-like 

quality (Podell et al., 2023). 

We argue that these generative AI models will provide new capabilities to social 

robots, enabling them to surpass the limitations that have kept social robots from 

entering real-world classrooms. We focus in particular on their autonomy and on 

the possibilities for adapting the interaction between the robot and the learner to the 

learner’s skill level and personalising the interaction to e.g. their interests. As AI 

researchers that develop autonomous social robots for educational scenarios, with 

this chapter we aim to present our vision of how generative AI will enable these 

new capabilities to educational social robots. We provide both background infor-

mation about the concrete generative AI models we deem important, as well as sev-

eral concrete applications showing how they can be integrated in social robots. With 

this, we hope to inspire anyone who researches or develops educational social ro-

bots, either from a technical or a pedagogical perspective. 

This chapter is structured as followed. We first discuss the constraints that cur-

rently limit educational social robots in Section 2. Then, we present the various 

types of generative AI models that we believe will be powerful for educational so-

cial robots in Section 3, along with a short history of these recent advances in gen-

erative AI. Section 4 then presents how they can concretely be applied in educa-

tional social robots, taking a few specific applications that were recently developed 

as examples. In Section 5, we discuss the remaining and new technical and societal 

limitations of these technologies, and finally summarize our findings in the conclu-

sion in Section 6. 

2. Current Limitations of Educational Social Robots 

People have been dreaming of robot teachers for decades – already in his 1951 

short story “The Fun They Had”, Isaac Asimov speculated about children each hav-

ing their own individual mechanical teacher. Today, social robots are real, and com-

mercially available robots like Nao, Pepper, Furhat, and others, can be used in real-

world settings. In the meantime, class groups are becoming more diverse, with chil-

dren (and parents) expecting more individualised support and tutoring, and many 
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countries struggling with teacher shortages. Then why are social robots not yet ubiq-

uitous in our schools? We examine what limits social robots today. 

2.1 Natural language interactions 

Perhaps the most prevalent mode of communication humans use, especially in 

teaching and learning interactions, is natural language. A teacher explains concepts 

to their students in natural language, students ask and answer questions, write an-

swers on tests, give presentations, write essays, and of course, in language educa-

tion, people learn by practicing a target language. 

However, this immediately lays bare one of the central challenges of social robot-

ics: holding natural conversations. Until recently, most robots’ conversational abil-

ities were powered by rule-based chatbots. This means that the robot programmer 

had to envision all possible utterances that the user could say and program appro-

priate responses for each of them. Templates provided some flexibility, meaning the 

user can substitute some words in the programmed template sentences, and more 

advanced intent recognition models could automatically categorize which option 

the user intended to say, within a predefined list of options. Data-driven approaches 

allow for more flexibility, but require data collection which is very expensive in 

HRI (Reimann et al., 2024). 

This approach clearly limits the possibilities and autonomy of the social robot. 

Suppose the user answers the robot’s question or instruction in a different way than 

was envisioned by the programmer, or worse, when the user asks the robot an un-

expected question, the robot will often not understand the user, leading to the inter-

action failing and possibly the user losing trust in the robot (Flook et al., 2019) 

As a consequence of this, many research studies that investigate the effectiveness 

of social robots in educational scenarios use tightly scripted interactions, or even 

rely on remote-controlled interactions. The latter is often called the “Wizard-of-Oz” 

approach, and relies on a human behind the scenes choosing what the robot says 

and does. While these scripted or “wizarded” studies provide insights into the po-

tential benefits and effects of social robots in education, these systems are not yet 

ready for autonomous deployment in the real world (Belpaeme et al., 2018). 

Another major limiting factor for human-robot conversations is the performance 

of automatic speech recognition (ASR) systems. While ASR has made great strides 

in recent years, really good performance is only achieved for typical populations, 

i.e. adult native speakers of a language for which many training examples are avail-

able, such as English, and preferably not speaking a dialect of this language. Espe-

cially for young children, speech recognition has long not performed well enough 

to work in autonomous interactions (Kennedy et al., 2017). Robot designers have 

had to resort to other modalities of interaction to cope with the lack of robust ASR, 

such as touchscreens where a child can select an option, or perhaps type a response 

(Belpaeme et al., 2018). 
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Taking into account both the necessity to rely on (partly) scripted conversations, 

and the lack of robust ASR for children, it becomes clear that social robot tutors 

could so far only be deployed in very narrow situations, only focussing on specific 

topics for which time-intensive work was needed from the robot designer to pro-

gram the interaction, and not supporting free-form input from the user. This has also 

limited which didactic methods could be used in the teaching and learning interac-

tions, as methods that rely heavily on conversations, with a lot of learner input, 

could not yet be reliably implemented. Specifically for (second) language educa-

tion, this has resulted in research focussing mostly on vocabulary teaching, as real 

conversational practice was not yet feasible (Randall, 2019).  

2.2 Multi-modal inputs 

Of course, humans do not only use language to communicate. We also convey 

information using other modalities, such as through what we can see or non-verbal 

sounds. People use social cues such as facial expressions, eye gaze, gestures, body 

pose, and prosody, to express emotions, and to infer information about others’ men-

tal states (Mehrabian, 1972). Crucial in education, teachers can use this information 

to assess how engaged and motivated a student is, but also whether they understand 

the material that is being discussed or if they are confused (Schutz et al., 2006). 

However, as we also saw in the previous section, tasks that are mostly intuitive 

and natural for people, such as conversations in natural language, are exceedingly 

difficult for AI – a principle often referred to as Moravec’s paradox (Moravec, 

1988). The same goes for interpreting such social signals. People express emotions 

and social signals in very subtle ways, often using movements that are only shortly 

visible (Krumhuber et al., 2013), and much less exaggerated than the stereotypical 

emotional expressions that are often found in datasets used to train AI models. 

These expressions are also highly individual (D’Mello et al., 2018), and furthermore 

difficult or even impossible to interpret without the context of the interaction 

(Mesquita & Boiger, 2014). 

While social signal processing, in educational applications especially focused on 

detecting engagement, has been an active research area for a number of years, sys-

tems for detecting engagement are often limited in their success to very specific 

contexts, and not yet ready for complex, real-world scenarios (Cumbal et al., 2020; 

Gunes & Churamani, 2023). 

Besides understanding social cues, educational robots should also be aware of 

their physical environment. As they are physically embodied, they share this space 

with the user. Their embodiment, which is often humanoid and thus contains eyes, 

also creates the expectation in the user that the robot can see. However, the conver-

sation models discussed in the previous section are often not, or only loosely, con-

nected with the visual input of the robot: chatbots are not designed with eyes in 

mind (Reimann et al., 2024; Janssens, 2024). 
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Using visual information about the environment, however, holds many opportu-

nities for educational robotics. The robot could refer to objects, people, or actions 

that are happening, which could aid in vocabulary acquisition (Bara & Kaminski, 

2019; Wolfert et al., 2024), or gestures could be used by the user to provide more 

information in the interaction. If the robot does not have access to this visual infor-

mation, it might also not understand some of the user utterances, if they refer to 

elements of the environment. 

The visual information can also be used to make the robot more sociable: it can 

personalise the conversation based on what the robot sees of the user. Going much 

further, the robot could personalise the entire interaction. Humans also adapt the 

way they speak, and especially how they explain things, to the person they are 

speaking to, and we also base this on the way someone looks. Simple personalisa-

tion of interactions, such as using the user’s name, has already been shown to in-

crease engagement in human-robot interactions (Henkemans et al., 2013), so adapt-

ing the interaction more extensively to the specific user could lead to even better 

outcomes. 

However, currently, social robots are limited in how they can use visual infor-

mation in interactions. Just as the conversations need to be largely scripted, systems 

currently need to be specifically designed to recognise a given set of objects at cer-

tain moments during the interaction (Wolfert et al., 2024).  

2.3 Adaptation and personalisation 

Perhaps the most promising aspect of using social robots in education is the poten-

tial for a completely personalised tutor for each learner – as Asimov already dreamt 

of in 1951. However, given the limitations already discussed, this dream is still far-

removed. As interactions needed to be extensively pre-programmed, all options for 

modifying the interaction needed to be foreseen by the designer. Concretely, this 

means that interactions cannot be easily personalised to the learner’s interest, by for 

example letting the learner choose a topic on which to converse during language 

learning. Also, providing new didactic content is often challenging, as the program-

ming of the robot is often not sufficiently accessible to teachers (Chevalier et al., 

2016). Adapting the content of the learning interaction to the learner’s performance, 

current skill level, or prior knowledge is also an important aspect of personalised 

robot tutors, but requires more flexibility than is available with the current conver-

sational models. 

Besides providing different options the robot can choose to use in its interaction 

with the learner, a major challenge is also knowing which of them to choose. The 

robot can, for example, choose interventions to improve the learner’s engagement, 

or to adapt to the learner’s skill level and aim to improve learning gain. However, 

for both cases, a model for the learner’s engagement or knowledge is needed (also 

called student modelling (Chrysafiadi & Virvou, 2013)), as well as a method to pre-

dict which impact each option has, allowing the robot to select the optimal action. 
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Both building these models and designing the action selection methods are chal-

lenging. One of the aspects that makes this challenging is the difficulty of detecting 

and interpreting non-verbal signals. However, progress has been made in building 

action selection models, e.g. using interactive reinforcement learning (Belpaeme et 

al., 2018). 

3. Recent Advances in generative AI 

As discussed in the previous section, one of the main limiting factors for social 

robots in education is their ability to process and express themselves in natural lan-

guage: most of our educational interactions take place in the form of natural lan-

guage. We claim that for social robots to fully integrate into education, they must 

master this form of communication. This would have remained a pipe dream, if not 

for generative AI. Generative AI offers the potential to converse with tutoring sys-

tems using natural language. This section describes the technology that made Gen-

erative AI, such as Claude or ChatGPT, possible, and paints a picture on how it 

created a revolution not only in language modelling, but also in speech recognition, 

image generation and multi-modal language models. We also look at how the field 

of natural language processing (NLP) has gotten to this point, and what technologies 

made this possible, as well as the advancements those technologies introduced for 

speech recognition, image generation, and multi-modal language models.  

3.1 Language Modelling 

Much of the data created by people is unstructured: natural language, meant for 

other humans – think about books, social media and blog posts, news articles and 

much more. This means that it is not organised in a way that computers can directly 

use it. The field of NLP tries to bridge that gap, by processing human language so 

that it is useable for computers. It has typically focussed on solving tasks that in-

volve natural language, and one of them is intent recognition. It is useful for, among 

other things, recognising what a user is trying to communicate. Related is sentiment 

analysis, where the emotional intent behind a piece of text is analysed. An example 

application of this is a company trying to estimate the public opinion of their product 

based on what is said about it on the internet. To gain structured information from 

a text, named entity recognition can be used. This task is about trying to extract 

named entities, such as people, places and organisations, from text. This can then 

be used for further classification. Another NLP task that is useful in (educational) 

robotics is ASR: transcribing text from speech in an audio file. Then, the transcrip-

tion can be fed to further processing steps that expect written text. 
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The NLP task that we will focus on here is language modelling, as the recent ad-

vancements in it are what we believe will have a great impact on educational social 

robotics. Modelling languages boils down to predicting the probability of a word 

given previous words. Many attempts have been made, staring with statistical mod-

els to, more recently, neural networks. If, given a few words, we know which words 

are more or less likely to follow it, we can use this information to choose a next 

word. Then, we add it to the words we already had, look at the probabilities of the 

next word, and again choose the following one. This way, language modelling is 

the key to generating text, which is what we needed to ease the natural language 

limitation in educational robotics. For a model to learn how to do this, it needs data 

– luckily natural language examples are abundant on the internet. Multiple ap-

proaches are used for training models to do this task. You can train a model by 

giving it the start of the sentence and having it predict the next word, as this word 

is of course known. BERT, the language model developed by Google in 2018, was 

trained using a masked language objective: some words in the training text were 

randomly deleted (masked), and the model had to estimate what word it should have 

been (Devlin et al., 2018). This task allowed the model to learn probabilities of 

words in context. Then, even if the model was not directly trained for predicting the 

next word given a part of a sentence, it still learns this task as it is closely enough 

related to the task it was trained on. This concept is called transfer learning: training 

a model on one task, and using it for a related, but different task. Transfer learning 

makes a model much more useful, as it can be applied to more than just the specific 

task that it was trained for. Often, language models are trained on a modelling ob-

jective as described above, making them a general-purpose model, after which they 

are re-trained using smaller amounts of data for a more specific downstream task, 

such as intent recognition, sentiment analysis, or even summarising text and an-

swering questions about it. This process is called fine-tuning, and it is a form of 

transfer learning. 

Now that we understand the goal of NLP and the importance of language model-

ling, we can look at the revolution in generative AI that we believe will have an 

impact on educational social robots. The part of the revolution that was most visible 

to the general public was OpenAI’s release of ChatGPT at the end of 2022 (Kasneci 

et al., 2023). ChatGPT’s sudden success was made possible by a technology that 

was proposed a few years before, in a widely cited publication: Attention is all you 

need, by a team of researchers at Google (Vaswani et al., 2017). This publication 

introduced the Transformer architecture. What sets this architecture apart from pre-

vious language modelling techniques, is that it allows text to be processed in a much 

more efficient way. The previous state-of-the-art – recurrent neural networks – tried 

to capture the sequential nature of textual data by processing it piece by piece while 

keeping a hidden state – a summary of all that it had processed already. While this 

technique showed great potential, its inherent limiting factor is that text must be 

processed sequentially. When processing large amounts of text – as is necessary for 

modern, data-hungry techniques – this is just too slow. The Transformer architec-

ture avoided the need for processing sequential data sequentially by introducing the 

concept of attention, as referenced in the name of the publication that started this 

revolution.  
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To understand attention, we will first take a look at why processing language is a 

difficult task. Within a sentence, words influence each other. Most of this influence 

is short distance: the article is decided by the word that follows. But, in some cases, 

this influence reaches a word that is further in a sentence, with many words in be-

tween. For example, the conjugation of a verb is decided by the subject, which can 

be multiple clauses away. Recurrent neural networks process such a sentence word 

by word, while keeping a summary of what was seen before. To predict the next 

word, this summary must contain the number of the subject – which might have 

been the first word of the sentence – so it can be remembered until the verb appears 

– which might be the last. The challenge of this long-term memory that is necessary 

for language understanding, together with the inefficiency of processing text piece 

by piece, is what the attention mechanism solves. 

The idea behind attention is that, when processing a part of the data, the model 

first determines what relevant information can be found in other parts of the data. 

Following the example of the subject’s influence on the verb’s conjugation, the at-

tention mechanism would decide that the subject is important for predicting the 

verb, as well as the object of the verb, while other words in between might not be. 

In attention, this problem is solved as follows. A sum of all words, weighted by their 

importance to the current word, is used as input during processing. As this weighted 

sum can be calculated for each word in relation to all other words simultaneously – 

allowing for parallelisation, the limitation of processing the data piece by piece, as 

in recurrent neural networks, is overcome. This way, the Transformer architecture 

can easily model long term interactions in sequential data, while processing more 

of this data at the same time. 

The introduction of the Transformer architecture allowed for faster, more parallel 

processing of data, fitting perfectly in an era of end-to-end, data-driven technolo-

gies: large models, trained directly for their end-task, using large amounts of data.  

The new possibility to train these models on such large amounts of data, allowed 

for advancements in their performance that were unreachable with previous tech-

nologies. These models are often referred to as Large Language Models (LLMs). 

At their core, LLMs do one thing: given some text, they predict the next word – 

just as your smartphone’s keyboard does. Therefore, you can ask it a question, and 

it generates an answer word by word. The resulting text is often very impressive 

and human-like, which makes it seem like there is more going on than just predict-

ing a next word. The difference between a LLM and your smartphone’s keyboard 

is that LLMs are trained on such large amounts of data, and on larger pieces of text 

at once, that they can find a pattern in the structure of language. It is important to 

note that this pattern recognition, which leads to very human-like text, is not the 

same as reasoning or even understanding. LLMs are just very good at generating 

text that seems like what an intelligent answer would be, but the reasoning steps 

that happen behind the scenes when a human is talking are not implemented in 

LLMs. 

We have established that LLMs take text as input and generate text that seems 

likely to follow the given text. The text that is given as input is often called the 

prompt. Using this prompt intelligently, can greatly improve how well the generated 

text matches what you are trying to do. This is a new form of transfer learning: the 

model is trained to model the probabilities of words, but using a prompt, we have it 



9 

fulfil a different task – like before, such tasks can include intent recognition, senti-

ment analysis, summarizing texts, answering questions, or generating example sen-

tences about a specific concept. Explaining the task or asking a question is called 

zero-shot prompting. Providing some examples of the task at hand is called few-

shot prompting and often already provides a noticeable improvement (Brown, et al., 

2020). Prompting an LLM to not immediately generate an answer, but to provide a 

chain of thought – some intermediate reasoning steps – improves the model’s rea-

soning skills, or it at least appears to do so (Wei et al., 2022). Actually, while the 

model generates these intermediate steps, it is still choosing what is most likely in 

a statistical sense. As the intermediate steps are usually more obvious and simple 

tasks, there is a higher chance that the model encountered something similar during 

training. Then, these intermediate steps are more likely to be correct. As the model 

then takes these generated steps as input when generating the final answer, its prob-

ability of correctness improves. Asking the model to generate intermediate steps is 

forcing it to reason out loud – which is the only kind of reasoning such a model can 

do. 

Prompting LLMs makes them suited for a variety of tasks, as they can generate 

language that is generally correct, human-like and - with intelligent prompting – 

adheres to the task quite well. Their usefulness for educational social robots is easy 

to imagine given this impressive ability, and knowing what limited social robots 

from fully succeeding in educational applications until now. 

3.2 Automatic Speech Recognition 

A similar story can be found in the performance of ASR: recognizing the speech 

in audio fragments and transcribing it. ASR has been researched extensively, and 

useful results have existed for years. In optimal settings, error rates of around 5% 

are reported, which is similar to or even better than human annotation (Xiong et al., 

2018). Though this sounds very promising, robust speech recognition that can han-

dle suboptimal environments, such as a noisy room, has been hard to attain 

(Karpagavalli & Chandra, 2016). Early models were heavily engineered, with hand-

crafted features that relied heavily on expert knowledge. This is often not robust 

and does not necessarily transfer between languages. Then, similar to the evolution 

in language modelling, there was a shift to end-to-end models. These were trained 

on raw audio and transcriptions, skipping the feature engineering step. End-to-end 

models tend to be too large for use on mobile devices, so cloud-based solutions 

appeared, such as the ones provided by Google and Microsoft. Finally, attention-

based – the core improvement of the Transformer – ASR were designed, by univer-

sities and companies such as Google (Chan et al., 2015; Bahdanau et al., 2016). 

Around 2022, OpenAI presented Whisper, an open-source ASR system. It uses a 

Transformer model as published in the original paper and is trained on an impres-

sive 680,000 hours of data (Radford et al., 2023). This again shows what is made 

possible by the Transformer architecture: an end-to-end (speech-to-text) application 
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trained on large amounts of data. Next to the computational ability to train a model 

on so much data, another challenge is to actually gather that data: expert-transcribed 

audio data is not available in abundance. The data that was collected for training 

Whisper is weakly supervised – not only transcriptions by expert are used, but the 

vast majority of the data is also made up of messier transcriptions that are not nec-

essarily high quality. This allows for much more training data, which makes a no-

ticeable difference. Whisper has an impressive performance close to that of humans 

for English (Radford et al., 2023), and as the training data contains several lan-

guages, it can also transcribe other languages – with the performance of course de-

pendent on the available resources of the language. 

In interaction with humanoid robots, humans expect to be able to use speech – so 

speech recognition is a necessary tool. The advent of the Transformer and attention-

based neural networks shows how robust speech recognition is possible, even in 

suboptimal situations. Especially in education, this is important. Classrooms are 

seldom not noisy, people learning languages do not always articulate perfectly and 

speak with accents, and child speech is generally much harder to understand than 

adult speech. Therefore, robustness is of utmost importance in this application, and 

Transformers show great potential in achieving it (Janssens et al., 2024a). 

3.3 Image Generation 

AI generated images are appearing everywhere the last few years, causing worry 

among artists (Ghosh & Fossas, 2022) and enthusiasm amongst the less artistically 

gifted. Not too long ago, generating an image based on a description of it was still 

science fiction. In the early days of image generation, many images of a certain 

subject were fed to a model, allowing the model to generate a similar image. This 

was often done with Generative Adversarial Networks (GANs). In a GAN, one neu-

ral network – the generator – generates images following the distribution of the 

training set, while another neural network – the discriminator – tries to distinguish 

fake, generated images from the training set. Then, these two models are trained 

simultaneously: the generator becomes better at generating images, while the dis-

criminator becomes better at discriminating between real and generated images 

(Goodfellow et al., 2014). While these GANs showed some promising results, hav-

ing to provide a large enough set of example images to generate a new image, is 

still very far away from the text-to-image generation we see nowadays. An attempt 

at a text-to-image model based on GANs was made, with encouraging results on 

specific subjects and at most visually plausible results for more general subjects 

(Reed et al., 2016). 

Again, the real revolution that brought AI generated images into the public eye, 

was started by applying the Transformer architecture to the problem. In 2021, 

OpenAI released DALL-E, a Transformer-based text-to-image model, which is an 

extension to GPT-3, their LLM. It takes text and possibly images as input and re-

turns images as output. A year later, DALL-E 2 was released, as their newest model 
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that generates more accurate and realistic images. DALL-E 2 is a diffusion model: 

it starts from an image that is just noise, and iteratively removes noise based on the 

text it was given, to increase the likeness of the image to the content of the text. 

Stable Diffusion is a similar text-to-image model that is open-source (Podell et al., 

2023). Many of these image generation models are also used to edit existing images, 

such as changing the style of the image, changing the posture of the subject and 

adding things as the user wants (Kawar et al., 2023). 

As high-quality image generation is now possible, advances are made in how to 

personalise these images. Techniques such as textual inversion are used to generate 

images with specific objects, animals or people in them, based on just a few pictures 

of it (Gal et al., 2022). This works by finding which ‘words’, in the vocabulary of 

the image generation model are closest to the object that we want to represent. Of 

course, the model – as all models do – doesn’t use natural language words internally, 

it uses a numerical representation of them. Therefore, it can make up new words – 

new numbers – as needed, which can then be exploited for the personalisation of 

the image it generates. 

Finally, the latest step in the evolution of image generation is a natural extension 

of it: video generation. As a video can be considered a sequence of images, or even 

an image with the dimension of time added to it, the aforementioned progress in 

image generation also translates to video generation, or text-to-video models. 

Again, OpenAI impressed the world in early 2024 by demonstrating Sora (Brooks 

et al., 2024): a text-to-video model that is not yet released to the public at the time 

of writing. It uses similar technologies as the DALL-E models, with a combination 

of diffusion models and transformers. As this technology is still quite new, it is 

exciting to wonder what the future of text-to-image and text-to-video will bring, but 

it is not hard to image that there will be numerous possibilities to apply this to edu-

cational settings. 

3.4 Multi-Modal Language Models 

While language models as discussed above have shown impressive performance in 

understanding natural language and generating new text or even images based on 

their input, one piece of the puzzle is still missing: understanding visual input. 

Initial language models were not made with multi-modality in mind. They only 

process information from one modality – text – and generate more text in return, or 

use that text for other tasks such as predicting a sentiment score or classifying it. 

However, as we discussed in our first section, social robots are situated in the phys-

ical world. They need to be aware of their environment and need to be able to inte-

grate what they see into their language. As social robots are often embodied in a 

humanoid shape, which usually includes eyes, users expect that the robot is able to 

see. They might ask the robot questions about an element of the environment, or 

make references to the environment in their speech. Hence, the robot requires visual 

information to understand the user. 
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This problem is often called situated language interaction: making the robot pro-

duce and understand language that refers to the physical and social world around it 

(Goodwin, 2000). This is also related to the concept of grounding: connecting words 

that refer to elements of the world, such as “red” or “table”, or even abstract con-

cepts such as “jealousy” to semantics and properties (Janssens, 2024). Grounding is 

seen as one of the important challenges that the field of human-robot interaction 

(HRI) poses for AI (Lemaignan et al., 2017). It is also a concrete implementation of 

the wider symbol grounding problem (Harnad, 1990). 

Efforts have been long underway to combine vision with natural language. One 

of the first and most-studied tasks in this area is that of image captioning, or writing 

a description of an image in natural language. Researchers were able to develop 

well-performing models for this task because of the release of large-scale annotated 

dataset such as MS COCO (Lin, et al., 2014) and Visual Genome (Krishna et al., 

2017). These models often consisted of a convolutional neural network (CNN) that 

processes the image and a recurrent neural network (RNN) that generates the text. 

Later, Transformer-based models were introduced to replace the text-generating and 

also the image-processing models. 

This work was then extended to more conversational tasks, such as visual question 

answering, where the AI model answers natural language questions about an image 

(Gan et al., 2022), and visual dialogue, where the user and the model can have a 

longer conversation about the image (Das et al., 2017). 

These models were originally built by training them for one specific task – how-

ever, this required a large dataset for that task. However, just like for text-only mod-

els, pre-training on large datasets that were scraped from the internet, such as im-

ages together with their alt-text or already provided captions, allowed the models to 

become more powerful and be fine-tuned to specific tasks (Gan et al., 2022). Some 

work-arounds also exist to integrating this visual context into language models 

when visual data is not sufficiently available, such as using a model that was spe-

cifically trained for image captioning, and then providing those captions to a text-

only model (Janssens et al., 2024b). 

Today, vision-language models are slowly becoming as powerful as the language-

only models. As the models and the datasets they are trained on are becoming larger 

and larger, they are becoming better and better at many zero-shot tasks, i.e. without 

being fine-tuned. Prominent examples include GPT-4o (OpenAI, 2022), BLIP-2 (Li 

et al., 2023) and LLaVa (Liu et al., 2024), the latter two of which are open-source. 

These models can write descriptions of images, answer questions or hold dialogues 

about them, but also perform more specific tasks, without needing to be fine-tuned. 
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4. Application of generative AI in Educational Robotics  

In the previous section, we looked at the technological advances that allowed for 

what can be considered a revolution in AI in the last years. We believe that this 

wave of advancements can have a strong impact on the success of educational social 

robots, so this section will describe our vision on how to leverage it optimally. In 

our vision, we put the social robot in a tutoring role: it does not take the teacher’s 

place, but it can support the teacher during classes, exercises, extra tutoring sessions 

and homework. Within the framework of this robot tutor, we see a few current lim-

itations that generative AI can help alleviate. First, we look at content generation 

through generative AI: using tools like LLMs and text-to-image models to write or 

illustrate the educational content that is delivered by the robot. Secondly, we discuss 

adaptation, where the flexibility of generative AI allows for adjusting the difficulty 

of the content to the student based on their personal progress, and thirdly, personal-

isation, where the content’s theme can be fit to the personal interests of the student. 

Finally, the potential of integrating multi-modal inputs such as vision and speech 

into a robotic teacher is explored. 

Because of personal interests and experience, our focus will be slightly biased 

towards – but not limited to – language education. 

4.1 Content Generation 

A large part of education is providing students with the content that contains what 

students should learn: explanations, both visual and textual illustrations, examples 

… In language education this is especially important, as much of language learning 

comes down to exposure to the language (Ellis & Wulff, 2020). 

If a social robot is used for educational purposes, there are three options: all con-

tent is provided to the robot beforehand by teachers and educators – in other words, 

what the robot does is scripted, there is a human in the loop that adjusts the robots 

behaviour to allow for flexibility in the lessons – in other words, the robot is (par-

tially) teleoperated, or the robot must be able to adjust its lesson on the fly (Senft et 

al., 2019). The first option is inherently limited: it is not possible to predict all in-

teractions between student and robot, we cannot foresee with which part of the les-

son students will struggle or what questions will be asked. This is not to say that 

there is no use in scripted lessons – sometimes delivering fixed content is the main 

point of a lesson, but to fully exploit the advantages of educational social robots, 

some flexibility in the robot’s behaviour is necessary. The second option – a (par-

tially) teleoperated robot tutor – is useful and necessary in a research context, but 

not scalable and most of all, it does not actually help alleviate teacher shortages: if 

we use robot tutors as classroom support, but each robot is controlled by a teacher, 

then we could have just added extra teachers, and the robots would not have been 

necessary. Therefore, we believe that the future of educational social robots is in 
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flexible, adjustable content and that this is one of the main current limitations where 

generative AI can have a real impact. 

When a robot tutor is asked questions, asked for an explanation or to give exam-

ples, it should give a natural language response. LLMs are good at exactly this: 

generating text based on other text. In language education, the correctness of the 

language of the answer is the most important, but during, for example, a history 

class, the information provided by the robot must also match the school curriculum 

while being factually correct. LLMs can therefore be extended using Retrieval Aug-

mented Generation (RAG), where – next to the implicit knowledge that an LLM has 

by knowing the probability of words – an external memory is added to the model 

(Lewis et al., 2020). In educational context, this could be the course’s textbook. The 

LLM can then search the textbook for the relevant information, add this to its inputs, 

and generate a factually correct answer based on its language knowledge combined 

with the relevant information. The combination of LLMs and techniques like RAG 

can allow social robots to support teachers without the added work of preparing 

scripted lessons. 

When delivering content to a student, it can help to also illustrate this visually. In 

language learning, the meaning of words and concepts can be conveyed to the stu-

dent visually. That way the need to translate everything to the student’s native lan-

guage is avoided, as the benefit of translation in language learning is a contested 

topic (Dagilienė, 2012). An additional benefit is that a language learning system 

that does not depend on translation, is agnostic to the native language of the student 

so it can be more readily reused. The most intuitive application for visually repre-

senting words is vocabulary learning: images of object are shown, either during 

exercises or when the robot talks about these words. We have shown this to be ef-

fective in a proof-of-concept study, where students play a game to learn vocabulary. 

They are shown a set of images and are told a description of one of these images – 

either by a robot or played from a tablet. All the images and descriptions were AI 

generated, based on the estimated language level of the student. The students had to 

choose which image fits best to the description. The game was played in a language 

that the students had very limited knowledge of, and even though no translations to 

their native language were used, they showed a statistically significant learning 

gain. This experiment shows the power of generative AI in adaptive content gener-

ation in educational contexts (Verhelst et al., 2024). 

In other parts of language learning, similar approaches can be developed. As much 

of language learning depends on exposure to the language, adding visual support of 

what the robot is talking about can help the student to better understand what is said. 

Imagine a robot telling a story interactively, using students’ input for the progres-

sion of the story – which is of course generated using an LLM. This will help engage 

the students, as they are actively part of the lesson, and they can influence the story 

to be more interesting to them. The students are still learning the language, so they 

might not understand each word or language construction the robot uses, but gener-

ative AI is used to visualize the story as it is told. This can keep the students’ atten-

tion, while filling in the gaps of what the students don’t yet understand inde-

pendently: a perfect combination for language learning. 

Generating visual content can of course also be used in education other than lan-

guage learning. Everywhere, from geography to mathematics classes, illustrations 
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are used in textbooks. Ensuring that we can generate illustrations that consistently 

adhere to the curriculum is not self-evident, but using techniques like editing exist-

ing images using generative AI can circumvent these issues: starting from correct 

images and editing only what is needed to fit the context. 

4.2 Difficulty adaptation 

In an educational context, it is important to deliver learning material of the correct 

difficulty level. Following Vygotsky’s theory on the zone of proximal development, 

a student learns most from content that is slightly too difficult for the student to 

solve independently, but just right with the help of a more advanced peer or an adult 

(Chaiklin, 2003) - or, of course, a robot. Following this theory, educational content 

should not be the same for every student. An educational social robot should have 

some way to estimate the student’s level, either by modelling the student’s 

knowledge, or collecting feedback during the lesson, in the form of incorrect an-

swers and expressions of confusion, both spoken and facial. If interactions with the 

social robot are largely scripted, it is difficult to dynamically adapt the difficulty of 

educational content to the student. 

As generative AI allows for exercises to be generated during the interaction, it is 

possible to use what is known about the student’s level to influence which exercises 

are generated. This can mean that we either adjust the language that is being used, 

or which content is being delivered to the student. During a mathematics class, we 

could monitor whether a student regularly makes mistakes on a certain topic. If such 

a topic has been identified, the lesson can be dynamically adjusted to focus more on 

this topic. It can be explained again or in more detail, and – using LLMs to generate 

the text, while the content is taken from the textbook using RAG – the explanation 

will be on the same topic but phrased differently. More exercises on the same topic 

can be chosen, until the student consistently shows good results. This way, the same 

concept can be taught to all students, starting from the same textbook and a loosely 

scripted lesson, that is then adapted to each student based on their answers to exer-

cises, their feedback, their non-verbal communication and their questions.  

To allow knowledge to be transferred to students, their understanding of this con-

tent should be maximalised. Therefore, all language that is used in class should be 

in reach of the student’s language level. Even if the content that is to be delivered 

is scripted, generative AI allows for flexibility in the difficulty of the language in 

which it is delivered.  

For language learning, most of the content is of course language itself, so this is 

extra relevant.  As mentioned before, in language learning, exposure to the language 

is of utmost importance (Ellis & Wulff, 2020) and ensuring that the language level 

is matched to that of the student has been shown to increase learning, and might 

increase the students’ participation during class (Randall, 2019). Adaptation of the 

lesson can be applied to exercises on e.g., grammar, similar to what was mentioned 

above, but it can also be applied to conversational learning. If a robot tutor is 
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available during a second language course, it can play the role of a native speaker 

in the language that the student is learning, providing examples of typical ways of 

speaking and correct pronunciation, while serving as a conversation partner. The 

content of the conversation does not have to be educational, as chatting with a native 

speaker about anything is increased exposure, thus useful. As many schools struggle 

with a shortage of teachers, and these teachers often do not have the time to practice 

conversational skills with their students, this might be a valuable asset for schools 

to bridge the gap from theoretical language learning to actual communicative skills. 

Influencing the difficulty level of language that is generated by a model can be 

done by prompting the model to generate language of this level, by prompting the 

model to match the difficulty level of the student’s inputs or by using a language 

model that is specifically trained to generate language of a certain difficulty level. 

The last option is the least flexible, as training a model must be done beforehand, 

but is likely the most robust way to ensure the desired behaviour (Lester et al., 

2021).  

Previously, adjusting the difficulty level of the content in educational technology 

could only be done by choosing which exercise to give the student, or by changing 

the exercises based on some predefined parameters that change the level of the ex-

ercise. Using generative AI for generating educational content gives us much more 

flexibility: the difficulty of content can be dynamically adapted to the student. As 

this can be done based on any input by the student – not only answers to exercises, 

this can happen at a much more fine-grained level than what can be predefined. This 

allows educational tutoring systems to adapt to every student individually, to create 

the best possible learning environment. 

4.3 Personalisation 

We have seen that generative AI can be used to generate educational content and 

that it can be used to adapt the content to the student’s educational level. Personal-

isation also involves adapting the educational content to the student, but with a focus 

on improving the student’s engagement, by ensuring a connection between the con-

tent and the student’s personal life, making it more relatable (Belpaeme et al., 2018). 

Students who enjoy sports more than they do mathematics classes might be more 

motivated to learn mathematical operations if they can do so by calculating the score 

of their team given a description of the match. So, while the content stays the same, 

personalisation can be used to package the contents in an engaging way. 

LLMs can generate exercises that involve students’ hobbies, and image generation 

models can be used to illustrate them. If these illustrations involve people, we can 

change their appearance to be more familiar to the student, as people tend to learn 

better from those who are more like themselves, and it can make students feel more 

included and involved in the lesson (Binderkrantz & Bisgaard, 2024). 

Additionally, new techniques like textual inversion, allow for inserting certain 

people, animals or objects into generated images. Catering the content to students’ 
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interests might help to engage them, which is beneficial for learning. We can use 

these techniques to insert elements of the student’s life into educational content. In 

educational materials, illustrations are often used to make the lesson more visually 

appealing (Houghton & Willows, 1987). If these illustrations are altered using gen-

erative AI techniques, to include the student’s favourite tv character, family or even 

the student themselves, it can be more engaging, while starting from a textbook 

image ensures that the content is still correct. 

For language learning, the conversational robot tutor, with which you practice 

language of your own level, can talk about anything you like, even remembering 

your interests and asking about your hobbies. If the main goal of the conversation 

is practicing the language, the options for personalisation are endless. If we are try-

ing to convey specific concepts, personalisation can be done as described similarly 

to other subject, conveying the same content but packaging it according to the stu-

dent’s interests. Visual support can be adapted to the student’s life: imagine the 

storytelling robot from before, where students could change the story’s narrative 

interactively. Personalisation can allow it to include their pet dog, and generative 

AI is now able to actually show this pet in whatever adventure the student chooses 

for it. 

4.4 Multi-modal interactions 

The revolutions in AI allow educational robots to do more than generate textual or 

visual content with endless possibilities for on-the-fly adaptation – they also allow 

the robot to perceive the world around it through multiple modalities, such as what 

they see and hear. This enables even more immersive and effective learning inter-

actions. 

Let us return to the example of language learning. Earlier, we discussed how vis-

ual content could be generated to support vocabulary learning. Now, this visual con-

tent could also be replaced by the physical world around the robot and the learner 

themselves. In Wolfert et al. (2024), we showed that students learn vocabulary bet-

ter when they are provided a visual referent of the concept they are learning, either 

on a screen or with a physical object. This approach could be much expanded. Eve-

rything the robot sees about its environment could be provided to the language 

model that is driving the conversation. The robot could therefore make references 

to objects or people in the surroundings, or even to movement, and the robot could 

ask or answer questions about the environment. These strategies can enrich natural 

conversations between the robot and the learner and could help the learner by 

grounding the language they are learning in the physical world, and by offering 

opportunities to practice concepts that require a physical referent in the environ-

ment. Visual content could also help to personalise the interaction with the user, 

potentially boosting motivation and social bonding, such as in (Janssens et al., 

2024b), where the robot addresses the user by asking a question about a feature of 

the user that the robot sees, such as their apparel. 
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Not only visual input can enrich the learning interaction: also auditive information 

can be important. We discussed earlier that speech recognition systems have im-

proved considerably in the last decade, including for smaller populations such as 

children. Now, finally, real conversational interactions between robots and children 

or non-native speakers might be possible. One could even dream of systems giving 

feedback on pronunciation. As an example, (Kennedy et al., 2024) have managed 

to extract pronunciation information from users saying their names, to enable the 

robot to correctly pronounce those names. (Amioka et al., 2023) also explored pro-

nunciation learning with social robots, by generating realistic lip movements for the 

robot when pronouncing the words to be taught – however, learners who do not yet 

have any knowledge of the language do not seem to benefit from these realistic lip 

movements. 

All modalities will have to be integrated to make the robot aware of its social 

environment. Social cognitive aspects of the learning interaction, such as the learner 

voluntarily or involuntarily communicating that they are interested, engaged, moti-

vated, uncertain, struggling … should be detected by the robot and provided to the 

AI models generating the interaction, in order to adapt the interaction to the learner, 

improving both the learning and social effectiveness of the interaction. 

Finally, we recognise that we have so far omitted the modalities of touch and 

proxemics (i.e. how close the human and robot are standing from each other). Both 

play important roles in human-human social interactions, and have been shown to 

also modulate human-robot interactions (Ren et al., 2023; Mumm & Mutlu, 2011). 

This could be leveraged to further improve educational robots, but has not been 

widely studied yet. 

5. Technical and societal limitations of generative AI 

Recent advances in generative AI allow us to dream big: it is now possible to have 

conversations with robots about anything, speech recognition seems to work for 

typical populations and is rapidly improving for atypical populations, and we can 

generate images and even videos that contain anything that can be thought of. Still, 

some challenges are left before generative AI can freely be applied to educational 

robotics. 

5.1 Real time conversations  

For a conversation to feel natural, the timing must be right. In human-human con-

versation, a lot happens to decide who speaks when: people know when their turn 

to speak arrives, based on eye contact, tone of voice and context. When changing 

turns – one person stops talking and another starts – people leave only 200ms of 
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silence on average, and often our speech even overlaps. For conversational systems, 

a response time of 700-1000ms is often deemed acceptable, even though this is al-

ready much longer than humans usually take (Skantze, 2021). That means that a 

robotic tutor must be able to provide an answer to students in less than one second. 

In this short time, many things must happen: the speech recognition must provide a 

transcript of the question, in some cases, e.g., when using RAG, a search must hap-

pen, then, a language model must generate an answer based on the question and 

perhaps the search results and finally, speech must be synthesized to play from the 

robot’s speakers. There are ASR systems that manage to generate a transcription in 

sub-second transcription time, but this is only one step of the way (Janssens et al., 

2024a). Answer generation by an LLM is reported to sometimes take up to three 

seconds, bringing us far over the maximum of one second, even without speech 

synthesis (Irfan et al., 2023). Therefore, before natural human-robot conversations 

can take place, the efficiency of the involved systems must be dramatically im-

proved. 

5.2 Controlling generative AI 

As discussed before, controlling the output of generative AI is generally done with 

prompt engineering: describing the task at hand to the model, using zero-shot or 

few-shot learning. Although this is a powerful way of applying a general model to 

a task it was not specifically trained for, tasks must be clearly and unambiguously 

described, using at most a few examples. This technique does not suit all tasks and 

there are limits to the control the user has over generated output when prompting a 

model. Prompting can have very variable results, with changes as small as adding 

one word already leading to vastly different results (Liu et al., 2023). Another often 

occurring problem is so-called hallucination: generated output diverging from the 

desired output, earlier output or conflicting with real-world facts (Zhang et al., 2023; 

Alkaissi & McFarlane, 2023). This is detrimental to the reliability of the outputs, 

especially when used in real-world applications. Additionally, strict control over the 

tone and language level of generated output is difficult, while ensuring appropriate 

text – both in difficulty level and in content – is of utmost importance in educational 

contexts. Additionally, if a social robot is expected to deliver some parts of a 

school’s curriculum, we must be able to guarantee that it actually does this, and that 

it does not tell the students anything incorrect or confusing. Finally, as LLMs are 

trained on human data, if an LLM is told that what it said was incorrect, it tends to 

agree, no matter the truth. So, if a conversational system that adheres to the curric-

ulum and that tells the truth is created, students might think it is wrong, question it 

or correct it, and get fed false information anyway. In educational settings, this can 

have strong consequences, with students learning incorrect things and not knowing 

who to trust. Therefore, having strict control over generative AI’s output is needed 

for reliable educational social robots. 
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5.3 Sustainability 

While generative AI and all technologies based on large neural networks are very 

powerful, its sustainability leaves much to be desired. When a neural network pro-

cesses information, it does calculations with this data. Each of these calculations 

takes a small amount of energy. The revolution in these technologies, as discussed 

in earlier sections, allowed much more calculations to be done in shorter times. Pro-

cessing data – doing calculations – could now be done in parallel. Of course, if each 

calculation takes some energy, parallelizing the calculations so we can do many of 

them at once makes it more energy consuming per time unit, while requiring less 

time. But the revolution in AI showed that these models had the capacity to find 

patterns and mimic reasoning when given enough data. So, these models were 

trained on more data, giving us more impressive models: larger, with more input 

and better output – and a larger energy consumption. The number of computations 

that our AI models require has been growing exponentially for a while now, together 

with their energy demands (Strubell et al., 2020). Of course, there is something to 

say for an increase in energy demand if it comes with increased performance, but 

the demand that comes with exponential growth is not something that our planet 

can afford. There are a few things that we can do to minimise this impact while still 

reaping the benefits of these impressive technologies (Lacoste et al., 2019). The 

location where a model is trained determines the energy source, how sustainable it 

is, and the carbon footprint of the model. Choosing this wisely is impactful and 

should be communicated transparently when making a model available. When using 

a model, its impact can be influenced by being mindful of the energy sources used 

in deployment. Additionally, choosing not to train your own model, but finetuning 

an existing one or even just prompting it without additional training minimizes the 

computational resources used. Finally, the hardware on which the AI models are 

trained and used, as well as the hardware of the robot, have a climate impact. More 

efficient hardware, which requires less compute time or performs your computa-

tions more effectively, will minimize the impact of this hardware. So, while using 

this powerful technology opens a lot of doors, especially in educational robotics, its 

consequences should be considered every step of the way, so that climate impact 

can be minimized where possible. 

5.4 Privacy 

When using LLMs and other generative AI in an educational context – often with 

minors, privacy is an important concern (Mhlanga, 2023). Most of the currently best 

performing LLMs, such as OpenAI’s GPT family and Google’s Gemini, are com-

mercially available through an API. This raises the problem that using it entails 

sending potentially sensitive data of vulnerable people to a company without know-

ing exactly how this data is saved and whether the company uses it, while issues of 
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these models’ adherence to privacy standards have been reported (Cartwright et al., 

2024). It is not unthinkable that companies that provide LLM services, would use 

this user data to further optimize their models. While this is understandable from 

the perspective of optimizing the models, children’s data in schools should not be 

freely used like that. Therefore, to ensure privacy on the data given to educational 

social robots, local LLMs should be used. Many open-source, local models exist, 

but running them can be complicated for people that do not have a technical back-

ground, such as often those in educational sectors. Therefore, the development of 

social robots for education that use generative AI should include providing easily 

accessible ways to run local LLMs, to ensure the privacy of students. 

5.5 Ethical problems 

If generative AI is used in educational robots, we can make them more human-

like and social than ever. We believe this can bring great benefits to students’ learn-

ing, but it also carries risks. The more socially human-like a conversational system 

or robot is, the higher the chance that students form attachments to it (Huber et al., 

2016). This can be dangerous for their development of social skills, as it may start 

replacing social contact with peers. Especially for younger students, attachment 

may pose a problem if the robot then breaks, is removed or replaced or the student 

loses access to it for other reasons. It is important that it is clear for students at all 

times that the educational robot is a tool for learning, not a person. On the other 

hand, if students know that the robot is not human, which means there are no con-

sequences to misbehaving towards it, this may lead to the normalisation of negative 

behaviour towards the robot, that later transfers to peers or teachers as well (Nomura 

et al., 2015).  

In current conversational systems using generative AI, there is already a risk of 

spreading false information (Chen & Shu, 2023). Put such a system into a role with 

authority on their education – such as a tutor, a teacher’s assistant or worse, a teacher 

– and students will not doubt its factuality. This is amplified by the appearance of 

reasoning in LLMs, which can take away doubt if it does arise. Additionally, LLMs 

tend to agree with whatever (false) information is suggested to them, which carries 

the risk of becoming an echo chamber (Nehring et al., 2024). Especially for young, 

vulnerable people, this can quickly become damaging, and should be avoided at all 

costs in educational environments. 

As governments and other regulatory bodies are exploring how to regulate AI in 

order to minimize the risks the technology poses to citizens and society, education 

is seen as an application domain of special importance. As an example, in the Eu-

ropean Union’s AI Act, education is identified as a high-risk application domain, 

meaning AI systems deployed in education should comply to quality, safety, and 

transparency requirements, and could be subjected to human oversight. In particu-

lar, using emotion recognition in educational institutions is classified as an unac-

ceptable risk and will be prohibited. It is yet unclear what emotion recognition 
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entails exactly, but care should be taken to ensure that such regulation does not limit 

opportunities for making socially interactive systems more adaptive, while ensuring 

that systems that would track students’ emotions at scale remain banned. Beyond 

education as a specific application area, general-purpose AI models, such as some 

LLMs discussed above, will undergo additional scrutiny, and have to comply to 

transparency requirements (Artificial Intelligence Act, 2024). 

6. Conclusion 

Today, social robots are not yet present in our classrooms. New, rapidly changing 

technology might change this in the near future. While educational robotics was 

limited by scripted interactions, failing speech recognition and only rigid options 

for adaptation to students, a revolution in generative AI technology has occurred, 

that might just change everything.  

In this chapter, we described our vision of the future that will follow from this 

revolution. We started by investigating the aforementioned limitations of educa-

tional robotics and their causes. What followed, was an introduction to the rapid 

changes in generative AI technologies that caused what we call a technological rev-

olution. These came together in the main section of this chapter, where we described 

in detail our future vision of educational robotics: how will this technological revo-

lution solve the current problems, and what is the potential impact of this on our 

classrooms. 

In this vision, the content that is provided in lessons will not be the same for every 

student, as there will be room for content generation on the fly. This can range from 

interactive explanations by a robot tutor, to illustrations of the stories that students 

are making up then and there. Generative AI will allow tutoring systems to adapt 

their difficulty level to each student – in a much more personal, fine-grained, and 

generalizable way than what is done today. Robots will manage to engage students 

even more by finding out what interests them specifically and use this to package 

content, so they want to know more about it. And as social robots are embodied, 

they share the physical world with us, which we can use to our advantage – from 

recognising when a student has lost interest, to involving the world around them in 

conversation.  

Of course, this technology is still in rapid development. It allows us to dream big, 

but as is always the case with new technology, it also introduces new issues. Some 

of these issues are technological challenges waiting to be solved. As technology 

evolves, generative models’ inference speed will decrease, allowing shorter gener-

ation times. It is reasonable to assume that the progression of AI technologies will 

allow for real time, natural flowing conversation with educational robots. The con-

straining of generative AI to be trustworthy is issue that asks for future research, 

with promising techniques arising rapidly. The sustainability of AI models is a prob-

lem that cannot be left unsolved, and future research should take this into account 

every step of the way, by minimizing impact where possible and ensuring 
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transparency of the results. The privacy of children in schools should be preserved, 

by either demanding transparency from commercial partners, or avoiding them by 

running AI models locally as much as possible and keeping full control over the 

involved data. Finally, the position of educational robots and, more generally, gen-

erative AI in our school should be chosen with care and communicated clearly to 

everyone involved, including those who might still be too young to grasp the possi-

ble dangers.  

It is clear that there is ample room for future research in the field of generative 

AI-driven educational robotics. On the one hand, the current limitations require new 

advancements, and existing technologies require care in their application to a field 

as critical and vulnerable as education. On the other hand, the revolution in genera-

tive AI opened many doors that have not yet been taken. The dream described in 

this chapter has not yet been realized, although it might already be possible. Only 

time will tell if the future of social robots in education will change as we described, 

and if Asimov’s dream of mechanical teachers will come true. 
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