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Abstract—Large Language Models (LLMs) allow social robots
to engage in unconstrained open-domain dialogue, but often make
mistakes when employed in real-world interactions, requiring
adaptation of LLMs to specific conversational contexts. However,
LLM adaptation techniques require a feedback signal, ideally
for multiple alternative utterances. At the same time, human-
robot dialogue data is scarce and research often relies on
external annotators. A tool for automatic prediction of user
enjoyment in human-robot dialogue is therefore needed. We
investigate the possibility of predicting user enjoyment turn-
by-turn using an LLM, giving it a proposed robot utterance
within the dialogue context, but without access to user response.
We compare this performance to the system’s enjoyment ratings
when user responses are available and to assessments by expert
human annotators, in addition to self-reported user perceptions.
We evaluate the proposed LLM predictor in a human-robot
interaction (HRI) dataset with conversation transcripts of 25
older adults’ 7-minute dialogues with a companion robot. Our
results show that an LLM is capable of predicting user en-
joyment, without loss of performance despite the lack of user
response and even achieving performance similar to that of
human expert annotators. Furthermore, results show that the
system surpasses expert annotators in its correlation with the
user’s self-reported perceptions of the conversation. This work
presents a tool to remove the reliance on external annotators
for enjoyment evaluation and paves the way toward real-time
adaptation in human-robot dialogue.

Index Terms—human-robot interaction; open-domain dia-
logue; user enjoyment; prediction; large language model

I. INTRODUCTION

Open-domain dialogue is a long-held dream and necessity in
human-robot interaction. Wherever socially interactive robots
are employed, such as companion robots in elderly care [1] or
tutors for children in classrooms [2], they need to be able to
engage in conversations with their users, as this is the most
natural communication interface for humans. Large Language
Models (LLMs) have recently provided the technology that
allows robots to react to anything a user could say, without
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Fig. 1. We compare an LLM’s performance at rating user enjoyment in two
conditions: detecting user enjoyment from an exchange that contains the user’s
response to a robot utterance, or predicting what the user enjoyment will be
after a given robot utterance. The diagram shows what the input is to the
system in those two conditions, with the dashed line indicating the dialogue
context that is also provided.

needing a script. However, they are known to often fail in
ways that disrupt the conversational flow when integrated in
social robots for conversational interactions, such as repeatedly
asking the same questions, giving replies that do not invite
further conversation, or hallucinating, all of which can nega-
tively affect user experiences, such as enjoyment during the
conversation [3].

In order to successfully drive social robot dialogue, LLMs
need this other fundamental human capacity: adapting to the
specific user and situation they are employed in—also called
alignment [4]. Real-time adaptation methods could manage
dialogue and prevent a conversation from going awry by
choosing the most appropriate potential response at any time
[5], while offline adaptation methods such as Reinforcement



Learning from Human Feedback (RLHF) [6], [7] could help
to specialise models for use in specific application contexts,
or could be a step towards lifelong learning or personal robots
[8].

However, any such adaptation techniques require a feedback
signal: an indication of how much the user will enjoy the
dialogue, and which potential utterance would be the best.
This clearly outlines a bottleneck that stands in the way of
applying LLM adaptation techniques to social robotics: we
need to be able to automatically predict user enjoyment on a
future robot utterance, without needing a human annotator. In
this work, we show that this is possible. We build a system
that predicts turn-by-turn ratings for user enjoyment in human-
robot dialogues. User enjoyment is rated on a 5-point scale
that was developed and validated by experts in comparison
to self-reported user perceptions in [9], named the Human-
Robot Interaction Conversational User Enjoyment Scale (HRI
CUES). The system is evaluated on a corpus of 25 open-
domain conversations between older adults and a Furhat social
robot whose dialogue was generated by an LLM, totalling 590
dialogue exchanges, each of which was rated by three expert
annotators, as also released by [9] alongside the rating scale.

We aim to answer the following research question: Can
turn-by-turn user enjoyment be predicted without the availabil-
ity of the user response to a robot utterance? We compare the
performance of a system that does not have access to the user’s
response (the enjoyment “prediction” system) to one that
does have this information (“detecting” enjoyment instead),
as shown in Figure 1. We hold these systems’ performances
to the standard of expert external human annotators, but also
look at correlation with the user’s own perceptions, based on
user-reported questionnaire results on enjoyment, which had
been completed after the interaction. We publicly release our
code1, aiming to fast-forward research into the adaptation of
LLMs for human-robot dialogue.

II. RELATED WORK

In general, there is a lack of systems that autonomously
evaluate dialogue quality [10] or user enjoyment in dialogue
[11], especially in social robotics. Despite the large interest in
LLMs as chatbots, evaluation of conversation quality is usually
done through pairwise comparisons, performed by humans or
LLMs [12]. While prior research has explored automatically
detecting user enjoyment or conversational quality in human-
robot interaction, to the best of our knowledge, none have
explored predicting it for utterances without a user response.

Paetzel-Prüsmann et al. [13] built a system to automatically
evaluate conversation quality for multi-party, multi-session
social dialogues with robots. Their analysis happens on a
whole-dialogue level instead of turn-by-turn and is designed
for conversational agents using dialogue trees and intent
recognition algorithms, not for an open-domain LLM-driven
dialogue system.

1github.com/rubenjanss/enjoyment-prediction-public

Specifically towards enjoyment in conversations, instead of
general conversation quality, research has mostly focussed on
detecting emotions in user responses using supervised models
[14], [15] or LLMs [16], [17]. Recent research has shown that
LLMs are also able to reason about a person’s emotions from
a third-party perspective, reaching the same as average human
performance [18].

Pereira et al. [11] investigated automatically detecting the
user enjoyment of a conversation turn-by-turn. Using ex-
changes that contain the user’s response to the robot utterance,
they found that LLMs can achieve similar performance to
human annotators on this task. However, as this technique
requires the user’s response to detect enjoyment, it is limited in
its application to adapting LLMs: it can only be used reactively
to adjust a conversation when low enjoyment is detected, while
a predictive system could prevent low enjoyment or be used
to adapt an entire LLM to generate more enjoyable dialogue
regardless of one particular interaction. Here, we build further
on their work: we replicate their detection system with a newer
LLM, adapt the system to predict enjoyment without the user
response, and compare the two on the same dataset they used.

III. METHODOLOGY

We first describe the dataset we use to evaluate our approach
and then describe the evaluation metrics that are used. Then,
we describe our system and each of the input components we
test in an ablation study.

A. Dataset

We evaluate our system on the publicly available HRI CUES
dataset [3] of 25 human-robot conversations, each between
an older adult and a Furhat social robot. Each conversation
lasts for approximately seven minutes and consists of open-
domain dialogue: the robot starts with a friendly greeting and
the users talk about anything they wanted. The conversations
are in Swedish (the native language of the users), and the
robot’s dialogue is generated by OpenAI’s GPT-3.5. The
dataset contains transcribed conversation scripts that are split
up into exchanges (robot utterance and the subsequent user
utterance) for a total of 590 exchanges. Each dialogue consists
of 12 to 29 exchanges.

The dataset contains ratings from three expert annotators for
each exchange in the dialogue on the five-point HRI CUES
scale [9]:

1) Very low enjoyment: discomfort and/or frustration.
2) Low enjoyment: boredom or interaction failure.
3) Neutral enjoyment: politely keeping up the interaction.
4) High enjoyment: smooth and effortless interaction.
5) Very high enjoyment: immersion in the conversation

and/or deeper connection with the robot.
This scale was validated on the same dataset we use here, with
the three annotators reaching moderate to good agreement [9].
Note that the annotator ratings were based on the user’s en-
joyment, deriving from their verbal and non-verbal reactions,
but not on the robot’s speech. As such, even if the robot made
a mistake, such as a repeated question or an interruption, this



could still result in a high enjoyment rating if, for example,
the user found this to be funny.

Besides turn-by-turn ratings, annotators also rated each
whole conversation for enjoyment on a five-point scale. The
users themselves were also asked to rate their whole conversa-
tion on four separate five-point Likert scale items: satisfaction,
fun, interestingness, and strangeness.

The four items showed high reliability (Cronbach’s α =
0.84), but no single external annotator’s whole-conversation
rating significantly correlated with any of these four items
nor the average of these items. Only the average whole-
conversation rating of all three annotators showed a significant
moderate (r = −0.42) Spearman correlation with the users’
self-reported perception of strangeness [9].

B. Evaluation
We compare the system’s performance in the prediction and

detection conditions by evaluating its turn-by-turn enjoyment
ratings against those of the human expert annotators. We
also report correlations with the whole-conversation ratings
reported by the users themselves.

For the turn-by-turn enjoyment ratings, the ratings of the
third annotator are considered as ground truth ratings. This
annotator’s ratings followed the most balanced distribution
across the scale out of all three annotators. As an indication
of human performance and agreement on this task, we also
report the “performance” of the other two annotators when
compared with the third annotator’s ratings.

The ground truth rating for the prediction and detection
conditions are the same: in the prediction condition, ground
truth is taken from the detection exchange that contains the
same robot utterance, as illustrated in Figure 1.

Performance is reported using two metrics: the Mean Abso-
lute Error (MAE) and the macro-averaged F1 score, as in [11].
The MAE, with 0 as the minimal and optimal score, reflects
how far-removed the predictions are from the ground truth.
Because the dataset is unbalanced (40% of exchanges were
rated as ‘3’ and only 5% as ‘1’), we also report the macro-
averaged F1 score—the average of the F1 scores calculated
separately for each of the five points of the scale. This score
ranges between 0 and 1, with 1 being the optimal score, and
penalises more heavily a system that would always predict
the most common value, mitigating the effect of the class
imbalance in the results. To show this difference, we also
report the scores of a baseline system that always predicts
the majority rating.

To prevent overfitting on this dataset, we split up the
25 interactions into a “development” set of 15 interactions
(totalling 355 exchanges) and a “test” set of 10 (totalling 235
exchanges), following common machine learning practices.
All evaluations of the prompt components are performed on
the development set, while the main two conditions (prediction
against detection) are evaluated on the test set.

C. System
The enjoyment predictions were generated by OpenAI’s

LLM GPT-4o, specifically using the gpt-4o-2024-08-06

checkpoint, as this is generally recognised as the LLM with
the best text comprehension at the time of writing [19]. In the
detection condition (including the user response), the model
was prompted using the following text, as adapted from [11]:

Given the following scale and the current exchange
between a robot and a human, rate the user enjoy-
ment in the current exchange with an integer value
(1 to 5).

For the prediction condition (omitting the user response),
the prompt was adapted by replacing “rate the user enjoyment
in the current exchange” with “predict the user enjoyment
after this exchange”.

This prompt was followed by the description of the scale
given in Section III-A. In an ablation study, we evaluate the
impact of the following additional input components, adapted
from [11], on system performance:
Scale details: a description of cues an annotator should look

for in the dialogue, for each point of the scale.
Examples: 10 example exchanges from different dialogues,

each with an expert annotator’s rating and reasoning for
the chosen rating.

Reasoning: prompting the model to output a reasoning for
the chosen rating.

Dialogue context: all previous exchanges in the dialogue.
Rating history: for each previous exchange in the dialogue,

the enjoyment rating that was predicted by the system.
The last element of the prompt is the exchange that is to be

rated. The format of the exchange depends on the condition:
Detection (with user response): robot utterance and subse-

quent user utterance.
Prediction (without user response): user utterance and

subsequent robot utterance.

IV. RESULTS

First, we evaluate the contribution of each prompt com-
ponent to the model’s performance, evaluating turn-by-turn
enjoyment prediction condition using the development set.
Then, we compare the prediction condition with the detection
condition to answer our main research question, evaluating
turn-by-turn enjoyment on the test set. Finally, we evaluate
the correlation with whole-dialogue user perceptions.

A. Ablation study

Table I reports the performance of the system on the
development set when expanding the prompt with different
input components. Rows starting with “+” indicate the prompt
contained all components of the rows above.

The results show that, although the differences in scores are
small, each of the added components increases performance on
both metrics, except adding the history of the system’s ratings.

Using the system with all components except rating history,
we evaluated the impact of the initial sentence of the prompt,
and changed it from the prompt that was adapted to the
prediction condition, to the prompt that was also used for the
detection condition. Surprisingly, this increased performance



TABLE I
ABLATION STUDY OF PROMPT COMPONENTS (nexchanges = 355)

Prompt components MAE F1 score
Only simple prompt, adapted for prediction 0.95 0.22
+ scale details 0.95 0.24
+ examples 0.93 0.26
+ reasoning 0.88 0.26
+ dialogue context 0.87 0.27
+ rating history 0.90 0.23
Detection prompt, all components exc. rating history 0.83 0.31
+ examples include user response 0.84 0.29

in the prediction condition. However, changing the format of
the example exchanges from “user utterance-robot response”
to “robot utterance-user response” decreased performance.

B. Prediction vs. Detection

We report the performance of our system on the test set,
comparing its performance in our two main conditions: with
access to the user response (detection) and without (predic-
tion). We use the best model configuration as found in the
previous section: using all prompt components except for
rating history and use the detection prompt in both conditions.
These results are reported in Table II and compared against the
human expert annotators and a baseline that always predicts
the rating that is most common in the dataset.

These results show that the prediction system is able to
achieve the same performance as the detection system. Further-
more, this performance is even very close to that of Annotator
1. Although we use Annotator 3’s ratings as ground truth,
the system was not specifically designed to approximate their
ratings, as it was only shown ratings all three annotators agreed
on. This shows that the system approximates the performance
of a human expert annotator, even without being shown the
user response.

C. Whole-dialogue User Perceptions

We investigate to what extent the systems’ ratings corre-
spond to the users’ own perception of enjoyment. As only
ratings for the whole conversation are available, we average
the systems’ turn-by-turn ratings and calculate the correlation
with the users’ self-reported ratings. Performance is reported
on the entire dataset (n = 25), as using whole-dialogue ratings
leaves too little data to split into a development and test set.

In Table II, we report the performance of the same system
configuration evaluated in the previous section, comparing pre-
diction and detection, and the correlation between the expert
annotators’ whole-conversation enjoyment rating. All scores
are Spearman correlations, and those that reach statistical
significance are marked with (*) for 0.01 < p < 0.05. The
Bonferroni correction for multiple testing was applied.

While none of the human expert annotators’ ratings sig-
nificantly correlated with the users’ perceptions, in both the
prediction and detection condition, the system is able to
achieve a significant moderate correlation with the users’
self-reported satisfaction and perception of strangeness. This
indicates that the system is clearly able to extract features that

TABLE II
PREDICTION AGAINST DETECTION AND HUMAN ANNOTATORS,

USING ANNOTATOR 3 AS GROUND TRUTH
(nexchanges = 235, ndialogues = 25)

Model MAE F1 Satisfaction Strangeness
Prediction 0.81 0.25 0.59 (*) -0.54 (*)
Detection 0.83 0.24 0.55 (*) -0.56 (*)
Annotator 1 0.69 0.32 0.01 -0.16
Annotator 2 0.60 0.40 -0.05 -0.01
Annotator 3 0.00 1.00 0.01 -0.29
Majority Baseline 0.76 0.11 — —

are relevant for the user. In neither condition did the system
significantly correlate with fun or interestingness.

V. DISCUSSION AND CONCLUSION

In this work, we set out to investigate whether it is possible
to predict user enjoyment in human-robot dialogue turn-by-
turn, without seeing the user’s response to the robot utterance.
While essential for adaptive conversational systems, this issue
was not yet considered by prior research. We built a system
using an LLM for this task, opting for OpenAI’s GPT-4o, and
investigated which input data this LLM needs to perform best
at this task. We have publicly released our system.

Our results show that prediction is possible: the system
performed just as well when predicting enjoyment as when
doing detection, where it did have access to the user response,
surpassing expectations. Comparing with multiple expert an-
notators, it even achieved similar performance to the humans.

We also investigated whether these predictions actually
correlate with the user’s perception of the conversation. While
human expert ratings did not correlate with user perceptions at
all, our system again surpassed our expectations and achieved
a significant correlation with user satisfaction and strangeness.

Multimodal information (e.g., video, audio) might provide
benefits to predicting user enjoyment, by giving more infor-
mation about dialogue context. However, this is a complex
endeavour, as user feedback is subtle and fast. Future work
should investigate how multimodal systems can be used for
enjoyment prediction, as well as looking at smaller, local
models that can better fulfil privacy, energy, and latency
requirements. More detailed analysis of which aspects of the
dialogue the LLMs makes use of also remains to be done.

Rating human-robot dialogue on a scale for user enjoy-
ment remains a complex and subjective matter, even with
a rigorously developed and validated scale. Although the
MAE indicates that, on average, the model’s prediction is
less than 1 point removed from the expert annotation, the
F1 score remains relatively low. However, this matches hu-
man performance and the model also correlates significantly
with user perceptions. This shows that LLMs have sufficient
representational ability of dialogue and user enjoyment to
enable judgments that can improve dialogue without seeing
the user response, either during a conversation or by applying
adaptation methods to an LLM. Together with our tool, we
believe these results will fast-forward research in adapting
LLMs for conversational human-robot interaction.
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G. Skantze, and A. Pereira, “Human-robot interaction conversational
user enjoyment scale (hri cues),” arXiv preprint arXiv:2405.01354, 2024.

[10] J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and
M. Cieliebak, “Survey on evaluation methods for dialogue systems,”
Artificial Intelligence Review, vol. 54, pp. 755–810, 2021.

[11] A. Pereira, L. Marcinek, J. Miniota, S. Thunberg, E. Lagerstedt,
J. Gustafson, G. Skantze, and B. Irfan, “Multimodal user enjoyment
detection in human-robot conversation: The power of large language
models,” in Proceedings of the 26th International Conference on Mul-
timodal Interaction, ICMI ’24, (New York, NY, USA), p. 469–478,
Association for Computing Machinery, 2024.

[12] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing, et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” Advances in Neural Information Processing Systems,
vol. 36, pp. 46595–46623, 2023.
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