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Abstract. Social robots have been shown to benefit learning and in par-
ticular language learning. However, existing language learning robots are
limited in their dialogue and adaptation capabilities: many systems use
pre-scripted lessons and adaptation options. As large language models
enable open-domain dialogue, a conversation practice robot now becomes
feasible. Such a robot should adapt its speech to the learner’s language
proficiency to make the learning more effective. For this, the robot must
first accurately detect that proficiency. This study contributes to this
capability by presenting a system that automatically assesses students’
speaking proficiency. Based on expert knowledge and related literature,
we extract relevant features from a graded student speech dataset. We
train a machine learning model on this dataset, paying particular atten-
tion to its learned weights to inform future research. We then validate the
model in a human-robot interaction setting, assessing how well it gener-
alizes from human-only training data. Our findings show that a model
relying on a limited set of feature types performs sufficiently well for
adaptation, with minimal degradation when applied to a human-robot
interaction scenario. Future work includes further automating the pro-
posed system and integrating it into an adaptation system, enabling a
fully adaptive conversational social robot for language learning.

Keywords: Robot-Assisted Language Learning (RALL), Assessment of Speech
Proficiency, Machine Learning, Adaptive Social Robot, Educational Social Robot

1 Introduction

Social robots show particular promise for language learning. Prior work has
shown that employing social robots in education leads to improved cognitive and
affective outcomes, largely attributed to their embodiment: the social nature of
interacting with these robot tutors engages students more than other educational
technologies do [3]. This strength in keeping students engaged makes them par-
ticularly well-suited for language learning, especially conversational practice, as
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most of second language acquisition is based on exposure [13]. However, previous
research on robots in language learning mainly focuses on vocabulary learning
[5]. This makes social robots for conversational practice a promising, emerging
domain for further research [20T4116].

A crucial element for an autonomous conversational practice robot is that it
should adapt to the student’s language proficiency. In any learning, the content
of what is taught should be in the student’s zone of proximal development for the
learning to be effective—meaning, the content should be within a certain range of
the student’s level, and should be challenging enough that the student struggles
to do it alone, but can do it with some help [8]. For language learning, research
has shown that matching the language level of what the student is exposed to
to that of the student increases learning gains and might increase engagement
[24)29]. Therefore, an effective social robot for conversational practice must be
able to adapt its language complexity to the student—and for this, it first has
to estimate the student’s proficiency.

This research investigates how speaking proficiency of a student can be au-
tomatically assessed in an interaction with a social robot for conversation prac-
tice. We first investigate how teachers assess speaking proficiency in practice,
interviewing two secondary education teachers and two language education re-
searchers. Then, informed by these interviews and prior work in automatic speak-
ing assessment, we select relevant features that are indicative of speaking pro-
ficiency and can be extracted from students’ speech during an interaction with
the robot. We train a machine learning model that uses these features to predict
an expert-graded speaking proficiency score, training and evaluating this model
on previously collected data from a longitudinal language development study
without robots. Finally, we set up a study in a school where students do interact
with a social robot and validate our model on these human-robot conversations.
This research shows the validity of automatic assessment of speaking proficiency
in human-robot interactions, indicating relevant features for that assessment,
and is a stepping stone towards an autonomous and adaptive social robot for
second language conversation practice.

2 Related work

Until recently, educational social robot tutors used mainly scripted, pre-planned
lessons that taught specific concepts to students [3], with social robots in general
not able to handle open-domain dialogue [4]. These limited, preplanned lessons
allow for only little adaptation, often with a small number of difficulty options
with a high difference in level between them.

Such adaptation is often powered by a student model, as in classical intelli-
gent tutoring systems, tracking the cognitive and affective state of the student
in relation to a domain model, which contains all relevant expert knowledge [22].
An example of a well-known student model is the Bayesian knowledge tracing
model. This model keeps estimates of how well the student understands each
piece of knowledge, which are updated after every student action [23]. While
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this allows for modelling of student knowledge in an easy, interpretable way, it
assumes that all lesson content has been predefined. Since the existence of large
language models (LLMs) now allows for open-domain dialogue, social robot tu-
tors might teach beyond a preplanned lesson and adapt in more fine-grained
ways [27].

Beyond human-robot interaction and adaptive tutoring systems, previous re-
search has explored automatic assessment of speaking proficiency [2J28]. Demand
for such automatic graders is high, as most language assessment in practice—in
schools or for standardised tests such as the International English Language Test-
ing System (IELTS) or the Test of English as a Foreign Language (TOEFL)—is
scored by a trained expert, which is time-consuming and expensive. These auto-
matic graders aim to replace the trained experts by predicting the expert-given
grades as accurately as possible, based on the students’ speech. Additionally, lan-
guage assessment also has applications in health care, where automatic systems
and even robots can play a role [25].

Many of these automatic grading systems take a classical machine learn-
ing approach: they typically extract features from the audio directly as well as
from transcriptions made by an automatic speech recognition (ASR) system, and
merge these as input for the grader [28]. These features are often handcrafted
based on expert knowledge, focusing on fluency, pronunciation, prosody or text
complexity. As part of these features are calculated on transcriptions, ASR er-
rors can negatively impact the grading quality. Additionally, transcriptions lose
crucial information about the intonation, rhythm and prosody of speech [2]. Re-
cently, ASR systems have improved significantly, but for atypical populations
like children and language learners, they tend to disappoint [I5J30]. These gen-
eral ASR improvements tend to hide disfluencies in the user’s speech, as they
are trained on fluent speech data and therefore output transcriptions of flu-
ent, correct speech, regardless of user mistakes. Additionally, improvements in
LLMs make ASR systems more useable as their context understanding lowers
the impact of ASR mistakes on the conversational quality [26]. However, these
improvements do not better the applicability in educational applications such as
providing feedback on learner speech, as an exact transcription, errors included,
is often necessary [2I]. The current ASR systems are therefore generally better
for conversational quality but worse for use in educational applications.

Technological advances in deep learning as well as a need to more accurately
model the complexity of speech led to the emergence of end-to-end automatic
grading systems. These can take audio as input directly, omitting the need for
feature extraction based on domain knowledge and avoiding the errors typically
introduced by ASR. An example of this is Banno and Matassoni’s assessment
system that is based on wav2vec 2.0 [2]. While these end-to-end systems might
improve the grading accuracy, deep learning based systems typically introduce
a non-negligible delay in comparison to classical machine learning approaches.

With this research, we aim to close the gap between automatic assessment

research and educational social robots. We propose a system to automatically
assess students’ speaking proficiency in human-robot interactions, aiming to en-
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able an adaptive educational social robot for second language conversational
practice—which has not yet been attempted before, to the best of our knowl-
edge.

3 Methodology

3.1 Expert interviews

We conducted interviews with experts to identify how teachers assess and adapt
to students’ speaking proficiency in practice during language teaching in schools.
Four experts were interviewed: two secondary school teachers, both teaching En-
glish in different grades, a postdoctoral researcher in English language education
and a postdoctoral researcher in French language education, both at Ghent Uni-
versity.

From these interviews, a number of features were identified that are used
to assess the students’ speaking proficiency. These features were thematically
grouped into three categories: lexical diversity, lexical sophistication and pronun-
ciation. The first group, lexical diversity, encompasses the amount of variation
in the words that the student uses. The second group, lexical sophistication,
focuses on the richness and rarity of the words uttered, with a specific focus
on word frequencies. Finally, pronunciation was highlighted to be an important
indicator for the speaking ability of a student.

The interviewed experts indicated that, while these items are usually not ex-
plicitly included in evaluation rubrics, they are often implicitly used as indicators
to assess higher-level concepts such as fluency.

Besides these three categories, experts also identified grammatical correct-
ness and cohesiveness as items that are often included in evaluation rubrics for
speaking proficiency. These items are not retained in the remainder of this work,
as they are more complex to objectively assess in a conversational context and
while essential for evaluation with the aim of providing feedback, they are not
essential when the aim is solely to adapt the language complexity to the student.

3.2 Dataset for model development

To develop the machine learning model that will predict students’ speaking pro-
ficiency, a dataset is needed of language learners’ speech with expert grades
assessing their speaking proficiency. For this, we use a dataset collected by De
Wilde and Lowie [12], comprising recordings of first-year English learners at
Dutch-speaking secondary schools completing a speaking assignment. The as-
signment consisted of two parts: an introductory question about the student
(e.g., "Can you describe your family?") and a picture narration task, where the
students are shown a story depicted in multiple images and asked to describe
it (see Figure (1) [ITJ7]. Data was collected from two schools in Flanders and
one in the Netherlands, totalling 64 students, all in their first year of secondary
school (n=64; mean age 11.9 years old, 5 students did not report their age; 32
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girls and 32 boys). Their prior exposure to English varied: some had already
received English instruction in primary school, others had just begun, and a few
had none. Data collection took place weekly over 30 weeks.

Fig. 1. Example set of pictures showing a story students were asked to describe [TTI7].

The dataset consists of raw speech recordings, manual transcriptions, and
an expert-graded speaking proficiency score out of twenty. For this score, the
graders used a rubric with five equally-weighted categories: grammar, vocabu-
lary, pronunciation, fluency and communication skills.

As these students are in the early stages of learning English, the recordings
and their transcripts contain a mix of English and Dutch (L1) speech. English-
only transcriptions were created from the originals by selecting only words that
are found in the English language corpus “abc” provided by the Python library
Natural Language ToolKit (NLTK) El

Where present, examiner speech was filtered out from the speech recordings
using the speaker diarization tool provided by the Python library WhisperX [I].

3.3 Features

Inspired by prior work in automatic assessment, we decide to extract features
from both the speech recordings and the transcripts. In this section, we describe
how these features are extracted from the data, following the three categories
identified from the expert interviews.

Lexical sophistication (LS) For calculating the lexical sophistication-related
metrics, the software tool TAALESEI was used [I7JI8|. The tool calculates fre-
quency measures of a text by comparing against selected corpora. It also calcu-
lates other LS metrics, such as concreteness, familiarity, imageability, meaning-

3 NLTK: https://www.nltk.org/api/nltk.html
* TAALES: https://www.linguisticanalysistools.org/taales.html
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fulness and age-of-acquisition. These metrics were calculated on the transcrip-
tions containing only the English words. In total, 251 features are extracted by
TAALES.

An initial exploration revealed correlations between the expert grades and
some of these automatically extracted features, showing the feasibility of this
approach. Interestingly, we found that in the dataset we analyse, students with
low scores used words with a higher age-of-acquisition and a lower frequency,
while these metrics normally correlate with higher proficiency. This finding was
also reported by De Wilde and Lowie, hypothesising that more advanced learners
are able to use English in everyday contexts, while learners with lower scores are
not yet sensitive to variables such as word frequency [10].

Lexical diversity (LD) For lexical diversity, 12 features were calculated by
the Python library TAALED P|[19] and 4 features by the library lexical-diversity
ﬁ Both libraries calculate lexical diversity-related measures such as the “type to-
ken ratio”, which measures the variety of words. These measures were again
calculated on the English-only transcriptions. Initial explorations also revealed
correlations between some of these measures and the proficiency scores, warrant-
ing their inclusion in the predictive model.

Pronunciation (PR) To calculate pronunciation-related features, the Python
library myprosody Dwas used, which is an implementation of the Praat-software
[6]. Using the raw speech recordings, this library extracts features such as num-
ber of pauses, speaking and total duration, rate of speech and articulation rate
and relevant ratios. Metrics related to the fundamental frequency (=f0) are cal-
culated as well. Additionally, prosody-related comparisons to benchmarks were
calculated. This resulted in 40 features in total.

Counterintuitively, metrics related to the ratio of speech time over total
recording time seem to initially decrease with increasing proficiency scores. As
these metrics are calculated on the audio containing both Dutch and English
speech, this could be explained by low-scoring students mostly speaking Dutch,
while as scores rise, students attempt to speak more English, causing hesitation
and a lower speech ratio. However, the most fluent students hesitate less and
less when speaking English, leading to higher scores and a higher speech rate.

Percentage of English words (EP) Finally, as the LS and LD features are
only calculated on the English parts of the transcripts, we also reflect the mix
between English and Dutch in the feature set by dividing the number of English
words by the total number of words. This is calculated by matching the words
in the transcription to an English language corpus (the abe corpus from NLTK)

® Taaled: https://pypi.org/project/taaled/
5 lexical-diversity: https://pypi.org/project/lexical-diversity/
" myprosody: https://github.com/Shahabks/myprosody
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and to a Dutch corpus ( dutch—words@. This feature is strongly correlated with
the expert-graded proficiency score.

3.4 Proficiency prediction model

Using these extracted features, we build a machine learning model that pre-
dicts the proficiency score. We opt for a simple and traditional machine learning
model, ridge regression, as we observed linear correlations between many features
and the proficiency scores and due to the limited size of the training dataset.
Additionally, the added computation time of deep learning models would hinder
real-time adaptation.

The dataset was split between a training set containing 80% of the data and
a test set of the remaining 20%. 10-fold cross-validation was used on the train-
ing set, and all splits were made ensuring all data belonging to single students
remained in the same segment.

Feature selection was performed using SelectKBest. Normalization was ap-
plied to scale features, a critical step due to the quadratic nature of the L2 reg-
ularization in ridge regression, and to allow for direct interpretation of learned
weights. A grid search was conducted to explore combinations of preprocess-
ing pipelines and hyperparameters, resulting in a powertransformer followed
by a standardscaler, with & = 226 and a = 0.1125. Model performance was
measured using the mean squared error (MSE), with this optimal configuration
resulting in a cross-validation MSE of 7.013. Performance on the held-out test
set is analysed in Section [4]

3.5 Human-robot evaluation study

To validate the model’s performance in interactions with a social robot, an eval-
uation study was set up in six classes from two Flemish secondary schools. Most
of the students (n = 60, mean audio duration of 75s) were 12-13 years old, having
nearly completed a full year of English classes, while a small sample (n = 4) of
older students was added to explore the model’s out-of-distribution performance.
This small sample consisted of students aged 14-15, nearing the end of their sec-
ond year of English classes. The study was conducted according to the ethical
rules presented in the General Ethics Protocol of the faculty of Engineering and
Architecture of Ghent University.

The data collection set-up consisted of a Furhat robot with external micro-
phone. To ensure consistency across experiments, the robot was teleoperated by
a researcher through prescripted questions. Audio and timestamps of the stu-
dent’s speech was logged, to later filter out the robot’s speech. The use of a robot
aimed to examine its impact on model performance, which was initially trained
on data without a robot. The setup is illustrated in Figure [2|

The experiment consisted of three parts. In the first, introductory part, aim-
ing to familiarize the student with the robot, the robot asked questions such as

8 Dutch-words: https://pypi.org/project/dutch-words/
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Fig. 2. Experiment Set-Up

“What is your name?”. This data was not used for analysis. For the second part,
the participants were asked to describe their perfect weekend. This was based
on advice provided by the experts in the interview, as they suggested to focus
on personal questions when students were not able to prepare for the assign-
ment. Third, the students were given the picture narration task seen in Figure
[[l This was modelled after the speaking assignments used to collect the training
data, to ensure transferability of the model. The audio recorded during this data
collection was manually transcribed.

This data was scored either by the teacher of that class or by the English
language teaching expert that also scored the training dataset. For uniform scor-
ing, the expert first scored one first-year class (n = 13) and the four second-year
students’ data. A sample of this data and the corresponding scores, together
with the filled-out rubrics used for scoring were given to the teachers. Using this
as an example, they scored the remaining data. An overview of the class groups,
number of students and who scored them can be found in Table

4 Results

4.1 Performance on development dataset

On the held-out test data, the model reaches an MSE of 9.057, compared to a
cross-validation MSE of 7.013 on the training data. For easier interpretation, we
will also report the mean absolute error (MAE) in this section, as this represents
the average deviation from the score on the same scale between 0 and 20. On
the held-out training data, the model reached an MAE of 2.380.

To investigate the importance of the different features on the final score, we
look at absolute values of the weights associated with that feature in the model.
It is important to note here that the ridge regression model can distribute weights
across correlated features, which can result in underestimation or dilution of the
importance of any single feature. Therefore, as we did not further investigate the
correlation between features, this ranking does not strictly show which features
have the most influence on the final score.

The five features with the largest learned weights in absolute value are shown
in Table[l] The first three are the percentage of English used by the student and
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the lexical diversity-related metrics number of types (which is a measure for the
number of unique words used) and word count (which measures the total amount
of words). These latter two are correlated, as more words generally means more
unique words. Number four, articulation rate, is the only pronunciation metric
in the top ten. It measures the number of syllables per unit of time. The fifth
feature listed here is meaningfulness. It is a dimension of lexical sophistication,
which measures how related a word is to other words and how many associations
it evokes. Therefore, words relating to physical objects will have a high meaning-
fulness, while abstract concepts will have a lower meaningfulness. Therefore, the
negative weight can be explained, as speakers with a lower proficiency will use
more literal, meaningful words, while the meaningfulness will decrease slightly
when learning [9]. The sixth to tenth largest weights, not listed here, correspond
to frequency-related lexical sophistication metrics based on different corpora.

Table 1. Five Largest Feature Weights in Trained Model Ranked by Absolute Weight

Rank Feature Weight Group
1  English percentage 47.227 EP
2 Number of types 18.589 LD
3 Word Count 15.181 LD
4 Articulation rate -8.772 PR
5  Meaningfulness -7.712 LS

4.2 Performance in human-robot evaluation study

Table [2] shows the MAE for each class group as well as who scored them. Class
3A is the small sample of older students. The MAE of the full first-year group as
well as the small sample of older students is not far from the 2.380 that was found
for the held-out training data. The scatter plot provided in Figure [3] shows each
student’s teacher- or expert-graded score against the model’s predicted score.

Deviations in MAE between classes can be explained by differences in scoring
strategy. The lowest MAE was found for class 1A, which was scored by the
expert, meaning this data is scored most similarly to the development dataset.
The MAE of classes 1C and 1D is slightly higher, while the error for class 1B is
much higher. Further investigation showed that, when scoring this specific class,
the scorer changed their scoring strategy compared to the other classes they
scored. The harsher scores for this class are clearly visible in Figure [3]

5 Conclusion

This research presented a system that automatically assesses a language learner’s
speaking proficiency in an interaction with a social robot. This system aims to en-
able a second language conversation practice robot that adapts its speech to the



10 E. Verhelst et al.

Table 2. Model Performance on Human-Robot Evaluation Study Per Class

Class MAE Students Evaluator
1A 1.321 13 Expert
1B 5.615 17 Teacherl
1C 2.378 15 Teacher2
1D 2.677 15 Teacherl

All first-years 3.140 60 -
3A 2.854 4 Expert

201

15

10 A

Predicted Score

0 L T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Real Score

Fig. 3. Scatter plot showing individual students’ expert- or teacher-graded proficiency
score against the model’s predicted score in the human-robot evaluation study. First
diagonal shown in grey, representing a perfect model. Note that some model predictions
exceed the maximum score of 20, as the model outputs continuous values without an

upper limit constraint.
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student’s proficiency in open-domain dialogue, whereas previous educational so-
cial robots were limited in their adaptivity to course-grained adaptation in fixed
lesson plans. The system uses an architecture based on prior work in automatic
assessment for standardised language tests, predicting a proficiency score based
on features extracted from the user’s speech and from a transcript thereof. These
features were informed by domain knowledge, through interviews conducted with
teaching experts. We trained a machine learning model, ridge regression, using
a previously collected dataset of language learners, and saw that the model’s
predicted proficiency scores are close to expert-graded scores, with an MAE of
2.38 on a scale from 0 to 20. Finally, we validated the model’s performance in
human-robot interactions by running a study where language learners in a school
interacted with a social robot, finding that the model’s performance transfers
well from the development dataset to the real-world interactions, achieving an
MAE of 3.14, confidently demonstrating the usability of this system. Grading
style was found to have a non-negligible impact on this metric. Additionally, we
investigated which features have the highest impact on the predicted scores.

A limitation of this research is that not all processing steps were automated
yet. Most importantly, manual transcriptions were used instead of automati-
cally generated ones. This choice was motivated by poorer ASR accuracy for
low-proficiency speakers and by the learners in the development dataset and
evaluation study speaking a mix of English and Dutch in the recordings. As
ASR systems typically aim to recognize one language, this strongly reduced
transcription accuracy. A dedicated system to recognise language switching dur-
ing the transcription processes could mitigate this issue. Besides transcription,
automatic processing was hindered by the unavailability of a programmatic in-
terface for the TAALES tool.

Future work should integrate this model into a full adaptation pipeline, in-
vestigating whether the model’s performance on predicting expert grades trans-
fers well to adaptation. Furthermore, future work can evaluate how well this
model transfers to other language learning interactions, investigating how fea-
tures should be differently weighted when the student completes a different learn-
ing assignment than the one used in this training dataset and evaluation study.

In conclusion, this paper contributes a speech proficiency assessment model
that is based on domain knowledge and prior automatic assessment work, and
shows that its performance transfers well to a human-robot interaction context.
This model is a stepping stone to a second language conversation practice robot
that dynamically adapts its speech to the learner’s speaking proficiency, a highly
promising avenue of future work in educational social robotics.
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